Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetol Metab Syndr ; 16(1): 59, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438892

RESUMO

BACKGROUND: Observational studies have indicated an association between diabetes mellitus (DM), glycemic traits, and the occurrence of Parkinson's disease (PD). However, the complex interactions between these factors and the presence of a causal relationship remain unclear. Therefore, we aim to systematically assess the causal relationship between diabetes, glycemic traits, and PD onset, risk, and progression. METHOD: We used two-sample Mendelian randomization (MR) to investigate potential associations between diabetes, glycemic traits, and PD. We used summary statistics from genome-wide association studies (GWAS). In addition, we employed multivariable Mendelian randomization to evaluate the mediating effects of anti-diabetic medications on the relationship between diabetes, glycemic traits, and PD. To ensure the robustness of our findings, we performed a series of sensitivity analyses. RESULTS: In our univariable Mendelian randomization (MR) analysis, we found evidence of a causal relationship between genetic susceptibility to type 1 diabetes (T1DM) and a reduced risk of PD (OR = 0.9708; 95% CI: 0.9466, 0.9956; P = 0.0214). In our multivariable MR analysis, after considering the conditions of anti-diabetic drug use, this correlation disappeared with adjustment for potential mediators, including anti-diabetic medications, insulin use, and metformin use. CONCLUSION: Our MR study confirms a potential protective causal relationship between genetically predicted type 1 diabetes and reduced risk of PD, which may be mediated by factors related to anti-diabetic medications.

2.
Acta Trop ; 252: 107138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307363

RESUMO

Ticks are small and adaptable arachnid ectoparasites and global carriers of various pathogens that threaten both human and animal health. They are present in many parts of China. A total of 858 ticks were collected from various regions and hosts, then subjected to species identification based on morphological and molecular characteristics, as described in the authors' previous study. Eighty-three individual tick samples were selected for screening pathogens based on metagenomic next-generation sequencing (mNGS) and polymerase chain reaction (PCR) assays. The genomic DNA of tick species was extracted, and amplification of the bacterial 16S rRNA gene was carried out from DNA of individual ticks using V3-V4 hypervariable regions, before subjecting to metagenomic analysis. Each tick underwent specific PCR tests for identifying the bacterial species present, including Anaplasma, Ehrlichia, Coxiella, and Rickettsia, and also protozoans such as Babesia, Theileria, and Hepatozoon. Illumina NovaSeq sequencing results revealed that the dominant phylum and family in Rhipicephalus spp. were Bacteroidota and Muribaculaceae, respectively. Alpha diversity patterns varied depending on tick sex (R. linnaei only), species and location, but not on host. Furthermore, bacterial pathogens, including A. marginale (58 %, 29/50), A. platys (6 %, 3/50), E. minasensis (2 %, 1/50), Ehrlichia sp. (10 %, 5/50), T. sinensis (24 %, 12/50), T. orientalis (54 %, 27/50) and Coxiella-like bacteria (CLB) (80 %, 40/50) were detected in R. microplus, while E. canis (33.33 %, 10/30), H. canis (20 %, 6/30) and CLB (100 %, 30/30) were detected in R. linnaei. Also, Anaplasma sp. (33.33 %, 1/3), A. marginale (33.33 %, 1/3), R. felis (33.33 %, 1/3) and CLB (100 %, 3/3) were detected in R. haemaphysaloides. Dual and triple co-infections involving pathogens or CLB were detected in 84.00 % of R. microplus, 66.66 % of R. haemaphysaloides, and 33.00 % of R. linnaei. The report on microbial communities and pathogens, which found from Rhipicephalus spp. in Hainan Island, is an important step towards a better understanding of tick-borne disease transmission. This is the first report in the area on the presence of Anaplasma sp., A. marginale, R. felis and Coxiella, in R. haemaphysaloides.


Assuntos
Ixodidae , Rhipicephalus , Rickettsia , Doenças Transmitidas por Carrapatos , Animais , Bovinos , Cães , Humanos , Ixodidae/genética , Ixodidae/microbiologia , Rhipicephalus/genética , RNA Ribossômico 16S/genética , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/microbiologia , Ehrlichia/genética , Rickettsia/genética , Anaplasma/genética , DNA , Sequenciamento de Nucleotídeos em Larga Escala
3.
Heliyon ; 9(11): e21589, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027675

RESUMO

Dengue fever has been a significant disease in Thailand for a long time, ranking it as one of the major health problems in the country. Management of the adult stage of mosquito vectors is approached by applying various synthetic chemicals such as adulticides, attractants, deterrents, and repellents. In Thailand, mosquito control and personal protection from mosquito bites are currently the most important measures for preventing and controlling mosquito-borne diseases. Although there are various control strategies for dengue disease, participation from the local community plays a vital role in the success of disease control. At present, a lot of local people have seen the value of local indigenous knowledge and used this to improve their life. The local community in the southern part of Thailand has used mosquito repellent from local knowledge for a long time. The problem regarding mosquito repellent made from local indigenous knowledge is that it has not yet been tested to determine its effectiveness. Therefore, this research aims to assess the effectiveness of mosquito repellent from local learning from Nakhon Si Thammarat provinces in Thailand. From the survey, out of 23 districts, six mosquito repellents were found in 3 communities, including Nabon, Muang, and Thasala. The repellent efficacy against the laboratory strain of Aedes aegypti by using the human-bait technique of the WHO (1996) standard method, with slight modifications. Approximately 0.1 ml of each test sample was applied evenly onto a 30 cm2 test site on one forearm of each human volunteer. Exposure experiments continued at 30 min intervals until at least two bites occurred in a 3-min period, or when a first bite was followed by a confirming bite (second bite) in the subsequent observation period. Each test was duplicated on different days for the two human volunteers. The result shows that three mosquito repellents made from local indigenous knowledge that have protection that lasts for more than 2 h are Ban Ko Sa Child Development Center's citronella spray (Nabon district, Kaew Saen subdistrict), Khun Lang's citronella spray, and Khun Lang's citronella ointment (Muang district, Pak Phun subdistrict). The result of this research was reported back to the local community to re-evaluate their self-reliance on their protection against mosquito biting.

4.
Genes (Basel) ; 14(8)2023 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-37628643

RESUMO

Ticks are small, blood-sucking arachnids, known vectors of various diseases, and found throughout the world. They are distributed basically in almost all regions of China. At present, there is not much information regarding tick species on Hainan Island. They were subjected to morphological identification and imaging on an individual basis. Molecular phylogenetic analyses, based on cox1 and 16S rRNA genes, were utilized to identify the species and determine their approximate phylogenetic origin and genetic diversity. The genomic DNA of tick species was extracted, and cytochrome oxidase subunit 1 (cox1) and 16S ribosomal RNA (rRNA) genes were amplified and sequenced. The identification of five tick species, namely Rhipicephalus microplus, Rhipicephalus sanguineus, Rhipicephalus haemaphysaloides, Haemaphysalis cornigera and Haemaphysalis mageshimaensis, was carried out by morphological analysis. When employing the cox1 and 16S rRNA phylogenetic tree, all isolates of R. microplus from Hainan Island were classified as clade A and B, respectively. R. sanguineus was recognized as a member of the tropical lineage by phylogenetic analysis on the cox1 and 16S rRNA genes. Three phylogenetic groups of R. haemaphysaloides were recognized and found to be related closely to strains from China. H. cornigera and H. mageshimaensis formed one phylogenetic group, presumably from tick strains prevalent in Japan and China. The haplotype network analysis indicated that R. microplus is classed into 26 and 6 haplotypes, which correspond to cox1 and 16S rRNA gene assemblages, respectively. In addition, four cox1 haplotypes were detected in R. sanguineus. This is the first evidence that suggests genetic diversity, host range and geographical distribution of hard ticks in Hainan Island, China.


Assuntos
Aracnídeos , Besouros , Ixodidae , Animais , Ixodidae/genética , Filogenia , RNA Ribossômico 16S/genética , China , Complexo IV da Cadeia de Transporte de Elétrons/genética
5.
J Med Entomol ; 58(3): 1298-1315, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33570125

RESUMO

Previous work presented the profound antimosquito potential of Petroselinum crispum essential oil (PEO) against either the pyrethroid-susceptible or resistant strains of Aedes aegypti. This plant oil also inhibited the activity of acetylcholinesterase and mixed-function oxidases significantly, thus suggesting its potential as a synergist for improving mosquitocidal efficacy of insecticidal formulations. This study investigated the chemical composition, larvicidal activity, and potential synergism with synthetic insecticides of PEO and its main compounds for the purpose of interacting with insecticide resistance in mosquito vectors. The chemical profile of PEO, obtained by GC-MS analysis, showed a total of 17 bioactive compounds, accounting for 99.09% of the whole oil, with the most dominant constituents being thymol (74.57%), p-cymene (10.73%), and γ-terpinene (8.34%). All PEO constituents exhibited promising larvicidal effects, with LC50 values ranging from 19.47 to 59.75 ppm against Ae. aegypti, in both the pyrethroid-susceptible and resistant strains. Furthermore, combination-based bioassays revealed that PEO, thymol, p-cymene, and γ-terpinene enhanced the efficacy of temephos and deltamethrin significantly. The most effective synergist with temephos was PEO, which reduced LC50 values to 2.73, 4.94, and 3.28 ppb against MCM-S, PMD-R, and UPK-R, respectively, with synergism ratio (SR) values of 1.33, 1.38, and 2.12, respectively. The best synergist with deltamethrin also was PEO, which reduced LC50 values against MCM-S, PMD-R, and UPK-R to 0.008, 0.18, and 2.49 ppb, respectively, with SR values of 21.25, 9.00, and 4.06, respectively. This research promoted the potential for using essential oil and its principal constituents as not only alternative larvicides, but also attractive synergists for enhancing efficacy of existing conventional insecticides.


Assuntos
Aedes , Inseticidas , Controle de Mosquitos , Nitrilas , Óleos Voláteis , Petroselinum/química , Piretrinas , Temefós , Aedes/crescimento & desenvolvimento , Animais , Larva/crescimento & desenvolvimento
6.
Insects ; 10(1)2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30586929

RESUMO

In ongoing screening research for edible plants, Petroselinum crispum essential oil was considered as a potential bioinsecticide with proven antimosquito activity against both the pyrethroid susceptible and resistant strains of Aedes aegypti. Due to the comparative mosquitocidal efficacy on these mosquitoes, this plant essential oil is promoted as an attractive candidate for further study in monitoring resistance of mosquito vectors. Therefore, the aim of this study was to evaluate the impact of P. crispum essential oil on the biochemical characteristics of the target mosquito larvae of Ae. aegypti, by determining quantitative changes of key enzymes responsible for xenobiotic detoxification, including glutathione-S-transferases (GSTs), α- and ß-esterases (α-/ß-ESTs), acetylcholinesterase (AChE), acid and alkaline phosphatases (ACP and ALP) and mixed-function oxidases (MFO). Three populations of Ae. aegypti, comprising the pyrethroid susceptible Muang Chiang Mai-susceptible (MCM-S) strain and the pyrethroid resistant Pang Mai Dang-resistant (PMD-R) and Upakut-resistant (UPK-R) strains, were used as test organisms. Biochemical study of Ae. aegypti larvae prior to treatment with P. crispum essential oil revealed that apart from AChE, the baseline activity of most defensive enzymes, such as GSTs, α-/ß-ESTs, ACP, ALP and MFO, in resistant UPK-R or PMD-R, was higher than that determined in susceptible MCM-S. However, after 24-h exposure to P. crispum essential oil, the pyrethroid susceptible and resistant Ae. aegypti showed similarity in biochemical features, with alterations of enzyme activity in the treated larvae, as compared to the controls. An increase in the activity levels of GSTs, α-/ß-ESTs, ACP and ALP was recorded in all strains of P. crispum oil-treated Ae. aegypti larvae, whereas MFO and AChE activity in these mosquitoes was decreased. The recognizable larvicidal capability on pyrethroid resistant Ae. aegypti, and the inhibitory effect on AChE and MFO, emphasized the potential of P. crispum essential oil as an attractive alternative application for management of mosquito resistance in current and future control programs.

7.
Parasit Vectors ; 11(1): 417, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30005688

RESUMO

BACKGROUND: In a previous screening program for mosquitocides from local edible plants in Thailand, essential oils (EOs) of Cyperus rotundus, Alpinia galanga and Cinnamomum verum, were found to possess promising adulticidal activity against Aedes aegypti. With the aim of reducing usage of conventional insecticides and improving the management of resistant mosquito populations, this study was designed to determine the potential synergism in the adulticidal efficacy of EOs on permethrin toxicity against Ae. aegypti, both pyrethroid-resistant and -susceptible strains. METHODS: EOs extracted from rhizomes of C. rotundus and A. galanga as well as C. verum barks were evaluated for chemical compositions and adulticidal activity against Muang Chiang Mai-susceptible (MCM-S) and Pang Mai Dang-resistant (PMD-R) strains of Ae. aegypti. Adulticidal bioassays of EO-permethrin mixtures for synergistic activity were also performed on these Ae. aegypti strains. RESULTS: Chemical characterization by the GC-MS analytical technique demonstrated that 48 compounds were identified from the EOs of C. rotundus, A. galanga and C. verum, representing 80.22%, 86.75% and 97.24%, respectively, of all compositions. Cyperene (14.04%), ß-bisabolene (18.27%) and cinnamaldehyde (64.66%) were the main constituents of C. rotundus, A. galanga and C. verum oils, respectively. In adulticidal bioassays, EOs of C. rotundus, A. galanga and C. verum were effective in killing Ae. aegypti, both MCM-S and PMD-R strains, with LD50 values of 10.05 and 9.57 µg/mg female, 7.97 and 7.94 µg/mg female, and 3.30 and 3.22 µg/mg female, respectively. The adulticidal efficacy against MCM-S and PMD-R Ae. aegypti of these EOs was close to that of piperonyl butoxide (PBO, LD50 values = 6.30 and 4.79 µg/mg female, respectively) but less pronounced than that of permethrin (LD50 values = 0.44 and 3.70 ng/mg female, respectively). Nevertheless, combination-based bioassays discovered the accomplished synergism of EOs together with permethrin. Significant synergistic effects with permethrin against both the strains of Ae. aegypti were recorded in the EOs of C. rotundus and A. galanga. Addition of C. rotundus and A. galanga oils decreased the LD50 values of permethrin against MCM-S dramatically from 0.44 to 0.07 and 0.11 ng/mg female, respectively, with synergism ratio (SR) values of 6.28 and 4.00, respectively. Furthermore, EOs of C. rotundus and A. galanga also reduced the LD50 values of permethrin against PMD-R drastically from 3.70 to 0.42 and 0.003 ng/mg female, respectively, with SR values of 8.81 and 1233.33, respectively. CONCLUSIONS: The synergy of enhanced adulticidal toxicity recorded from EO-permethrin combinations against both strains of Ae. aegypti presents a promising role of EOs as a synergist for improving mosquitocidal efficacy, particularly in situations where conventional compounds are ineffective or inappropriate.


Assuntos
Aedes , Cinnamomum zeylanicum/química , Inseticidas , Controle de Mosquitos/métodos , Óleos Voláteis/farmacologia , Permetrina/farmacologia , Alpinia/química , Animais , Cyperus/química , Sinergismo Farmacológico , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Resistência a Inseticidas/efeitos dos fármacos , Dose Letal Mediana , Óleos Voláteis/química
8.
Parasit Vectors ; 9(1): 373, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27357395

RESUMO

BACKGROUND: Angelica sinensis (Oliv.) hexane extract (AHE) has been reported as a proven and impressive repellent against laboratory-reared female Aedes aegypti mosquitoes. With the aim of promoting products of plant origin as a viable alternative to conventional synthetic substances, this study was designed to transform AHE-based repellents for exploitable commercial production by enhancing their efficacy and assessing their physical and biological stability as well as repellency against mosquitoes under laboratory and field conditions. METHODS: The chemical profile of AHE was analyzed by qualitative gas chromatography-mass spectrometry (GC-MS) technique. AHE was supplemented with vanillin, as a fixative, and then investigated for repellency and comparison to the standard synthetic repellent, DEET, under both laboratory and field conditions. Determination of physical and biological stability as a repellent was carried out after keeping AHE samples under varying temperatures and for different storage times. RESULTS: GC-MS analysis revealed that AHE contained at least 21 phytochemical compounds, constituting 95.74 % of the total content, with the major constituent of 3-N-butylphthalide (66.67 %). Ethanolic formulations of AHE and DEET showed improvement of repellency in a dose-dependent manner when vanillin was added in laboratory assessment. While 5-25 % AHE alone provided median complete-protection times of 2.0-6.5 h against Ae. aegypti, these times were increased to 4.0-8.5 h with a combination of AHE and 5 % vanillin (AHEv). Protection times against Ae. aegypti were extended from 2.25 to 7.25 h to 4.25-8.25 h when 5-25 % DEET was combined with 5 % vanillin (DEETv). In determining stability, all stored AHE samples exhibited similar characteristics such as liquid phases with aromatic odor comparable to those of fresh preparations. Furthermore, repellent activity of stored AHE samples lasted for at least six months, with varied efficacy (4.5-10.0 h) against Ae. aegypti. Field trials revealed strong repellency from both 25 % AHEv and 25 % DEETv, with complete protection (100 %) against a wide range of local mosquito populations. A total of 5,718 adult female mosquitoes, with the most predominant being Culex quinquefasciatus (41.47 %), Armigeres subalbatus (41.13 %), and Culex vishnui (10.53 %), was collected during field applications. No local skin reaction or other allergic responses was observed during both laboratory and field study periods. CONCLUSIONS: Angelica sinensis proved to have not only impressive repellency against both laboratory Ae. aegypti and a wide range of natural mosquito populations, but also relative stability in physical and biological performance.


Assuntos
Angelica sinensis/química , Culicidae/efeitos dos fármacos , Repelentes de Insetos/farmacologia , Animais , Benzofuranos/química , Feminino , Humanos , Repelentes de Insetos/química , Ácido Linoleico/química , Masculino , Estrutura Molecular , Anidridos Ftálicos/química , Extratos Vegetais/farmacologia , Tailândia
9.
Malar J ; 14: 307, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26249666

RESUMO

BACKGROUND: For personal protection against mosquito bites, user-friendly natural repellents, particularly from plant origin, are considered as a potential alternative to applications currently based on synthetics such as DEET, the standard chemical repellent. This study was carried out in Thailand to evaluate the repellency of Ligusticum sinense hexane extract (LHE) against laboratory Anopheles minimus and Aedes aegypti, the primary vectors of malaria and dengue fever, respectively. METHODS: Repellent testing of 25% LHE against the two target mosquitoes; An. minimus and Ae. aegypti, was performed and compared to the standard repellent, DEET, with the assistance of six human volunteers of either sex under laboratory conditions. The physical and biological stability of LHE also was determined after keeping it in conditions that varied in temperature and storage time. Finally, LHE was analysed chemically using the qualitative GC/MS technique in order to demonstrate a profile of chemical constituents. RESULTS: Ethanol preparations of LHE, with and without 5% vanillin, demonstrated a remarkably effective performance when compared to DEET in repelling both An. minimus and Ae. aegypti. While 25% LHE alone provided median complete-protection times against An. minimus and Ae. aegypti of 11.5 (9.0-14.0) hours and 6.5 (5.5-9.5) hours, respectively, the addition of 5% vanillin increased those times to 12.5 (9.0-16.0) hours and 11.0 (7.0-13.5) hours, respectively. Correspondingly, vanillin added to 25% DEET also extended the protection times from 11.5 (10.5-15.0) hours to 14.25 (11.0-18.0) hours and 8.0 (5.0-9.5) hours to 8.75 (7.5-11.0) hours against An. minimus and Ae. aegypti, respectively. No local skin reaction such as rash, swelling or irritation was observed during the study period. Although LHE samples kept at ambient temperature (21-35°C), and 45°C for 1, 2 and 3 months, demonstrated similar physical characteristics, such as similar viscosity and a pleasant odour, to those that were fresh and stored at 4°C, their colour changed from light- to dark-brown. Interestingly, repellency against Ae. aegypti of stored LHE was presented for a period of at least 3 months, with insignificantly varied efficacy. Chemical analysis revealed that the main components of LHE were 3-N-butylphthalide (31.46%), 2, 5-dimethylpyridine (21.94%) and linoleic acid (16.41%), constituting 69.81% of all the extract composition. CONCLUSIONS: LHE with proven repellent efficacy, no side effects on the skin, and a rather stable state when kept in varied conditions is considered to be a potential candidate for developing a new natural alternative to DEET, or an additional weapon for integrated vector control when used together with other chemicals/measures.


Assuntos
Aedes/efeitos dos fármacos , Anopheles/efeitos dos fármacos , Repelentes de Insetos/farmacologia , Ligusticum/química , Controle de Mosquitos/métodos , Adulto , Animais , Feminino , Humanos , Masculino , Extratos Vegetais/farmacologia , Especificidade da Espécie , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...